江南体育

Novel high-brightness diode lasers

Introduction

High-brightness laser diodes are the driving force behind all modern laser systems, and the key enabling technology for the most advanced scientific and industrial laser applications. The world-record brightness in laser diode modules has recently been demonstrated by Lawrence Livermore National Laboratory (LLNL) and Lasertel Inc, using micro-optics technology from Power Photonic Ltd (UK), which was originally developed by 江南体育 University.

Several questions remain that need to be answered with careful design and engineering: How can we use micro-optics to better utilise the highly divergent light emitted by each single diode emitter; How can we best combine many single-emitter beams to produce a combined laser beam; Can we select the optimum wavelengths to pump a particular solid-state laser or fibre laser; Can we design a high brightness laser diode module that is compact and cost-effective using additive manufacturing?

This project is part of the research collaboration between Renishaw PLC, the EPSRC Centre for Innovative Manufacturing in Laser-based Production Processes (CIM-Laser) and 江南体育 University. Our target is to design, develop and demonstrate novel laser systems that can be used for future manufacturing applications, including powder bed additive layer manufacturing.

Project description: Novel high-brightness diode lasers

The objective of this project is to develop novel technologies relating to high-power, high-brightness diode laser sources. It aims to develop a new beam combining optical scheme coupled to an additively manufactured (AM) carrier with built-in cooling to accurately and stably mount the diode lasers and optics. Power and brightness scaling will be achieved using custom micro-optics to combine a number of laser diode arrays using spatial, polarisation and wavelength techniques. Scalable, high brightness direct diode power will have a broad range of applications, but in particular machine concepts will be investigated for beam delivery to a metal AM powder bed, to characterise and understand the beam-powder interaction and subsequent melt pool dynamics.

Location

江南体育 is based in a modern environment on the outskirts of Edinburgh, with excellent transport links to the centre of one of Europe鈥檚 most exciting cities. 江南体育 hosts the EPSRC Centre for Doctoral Training in Applied Photonics, cementing 江南体育鈥檚 reputation as a centre of excellence in photonics, and providing PhD students with an even more attractive environment for study, as well as enhanced training opportunities.

江南体育 Institute of Photonics and Quantum Sciences (IPAQS)

IPAQS is a thriving environment for PhD research, having a total of 160 academics, postdocs, PhD and EngD students working full-time in the general photonics field. It鈥檚 a friendly collaborative environment where staff and students freely interact -- not least at Friday morning coffee and donut sessions.

Funding Notes

This 4-year project is funded by the EPSRC under an Industrial CASE from Renishaw PLC. The EPSRC total funding is £83,296 to cover the 4 year value of stipend, fees and incidental costs, with a further enhancement from Renishaw. Funding is available only to UK residents, although EU nationals may also be considered under certain circumstances. A substantial consumables and equipment budget is provided by a concurrent EPSRC CIM-Laser grant. Travel funding for conference presentations is also available.

References

Please send a CV including 2 references to Prof. Daniel Esser at M.J.D.Esser@hw.ac.uk